首页/经验/正文
数学高考2017四川(2017年四川高考相关)

 2024年01月10日  阅读 55  评论 0

摘要:[db:Intro]

你好 我是四川某地区高二学生 信息六成属实 (可能也有些也不对哈…)

1、我们老师说我们明年考的是全国二卷老师说北京上海那些地方应该是一卷,我们是二卷,少数民族地区是三卷 。 我也不清楚到底准不准确!!!!!我们现在一直都在练二卷的题型,反正希望是这样的哈

2、就我个人而言 难度比四川卷小一点 难易的具体分析:(1)语数外感觉比四川卷难度小。可能在主科方面,英语难度成分比较大,因为四川考生在之前四川卷没有考听力,要格外训练,所以难度较大一点,总体来说和四川卷相比还是较为简单。(2)因为本人就读文科综合,所以只对文科进行探讨。个人觉得难度成分要大一点点,因为主观题(就是大题)的各个小分问分值没有明确,你不知道该如何应对它,所以难度较大,以前四川卷是很明确的小分点都有分值的,你可以去问问你的文科老师,这个确实是这样哈。但应该总体和四川卷相比难易程度适中,差不多的。

3、因为不了解全国三卷和一卷 所以就不作太多评价

4、我觉得我们现在主要就是把握好语数外,我觉得这对四川考生比较有利的(尤其是数学),在文综和理综方面侧重去适应改动的部分,应该大体都是OK的,反正我个人倾向喜欢全国卷的,做起的感觉比四川卷要舒服点…

说了这么多,我觉得都没什么卵用。。。反正希望同学你不要抱有太大的压力,慢慢来嘛,相信具体每科怎么改你也清楚,就针对那些考点进行复习就是,明年考试一起加油!

2017年高考数学模拟试题及答案:数列

2017年高考使用全国Ⅰ卷的省份:

福建、河南、河北、山西、江西、湖北、湖南、广东、安徽。

山东省部分科目使用全国Ⅰ卷:

全国Ⅰ卷;外语、文综、理综, 自主命题:语文、文数、理数。

扩展资料

(新课标Ⅱ卷)

2015年及其之前:贵州 甘肃 广西 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁(综合)海南(语文 数学 英语)。

2015年增加省份:辽宁 (语文 数学 英语)。

2016年增加省份:陕西、重庆、;取消省份:广西 云南 贵州。

2018年使用省区:甘肃、青海、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南(语文、数学、英语)西藏2018使用的是全国三卷。

参考资料:高考试题全国卷_百度百科

高考数学模拟试题及答案:数列

1.(2015·四川卷)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列。

(1)求数列{an}的通项公式;

(2)记数列an(1的前n项和为Tn,求使得|Tn-1|<1 000(1成立的n的最小值。

解 (1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2)。

从而a2=2a1,a3=2a2=4a1。

又因为a1,a2+1,a3成等差数列,

即a1+a3=2(a2+1)。

所以a1+4a1=2(2a1+1),解得a1=2。

所以,数列{an}是首项为2,公比为2的等比数列。

故an=2n。

(2)由(1)得an(1=2n(1。

所以Tn=2(1+22(1+…+2n(1=2(1=1-2n(1。

由|Tn-1|<1 000(1,得-1(1<1 000(1,

即2n>1 000。

因为29=512<1 000<1 024=210,所以n≥10。

于是,使|Tn-1|<1 000(1成立的n的最小值为10。

2.(2015·山东卷)设数列{an}的前n项和为Sn。已知2Sn=3n+3。

(1)求{an}的通项公式;

(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn。

解 (1)因为2Sn=3n+3,所以2a1=3+3,故a1=3,

当n>1时,2Sn-1=3n-1+3,

此时2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,

又因为n=1时,不满足上式,所以an=3n-1,n>1。(3,n=1,

(2)因为anbn=log3an,所以b1=3(1,

当n>1时,bn=31-nlog33n-1=(n-1)·31-n。

所以T1=b1=3(1;

当n>1时,Tn=b1+b2+b3+…+bn=3(1+(1×3-1+2×3-2+…+(n-1)×31-n),

所以3Tn=1+(1×30+2×3-1+…+(n-1)×32-n),

两式相减,得2Tn=3(2+(30+3-1+3-2+…+32-n)-(n-1)×31-n=3(2+1-3-1(1-31-n-(n-1)×31-n=6(13-2×3n(6n+3,所以Tn=12(13-4×3n(6n+3。经检验,n=1时也适合。

综上可得Tn=12(13-4×3n(6n+3。

?3.(2015·天津卷)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列。

(1)求q的值和{an}的通项公式;

(2)设bn=a2n-1(log2a2n,n∈N*,求数列{bn}的前n项和。

解 (1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,

所以a2(q-1)=a3(q-1)。又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2。

当n=2k-1(k∈N*)时,an=a2k-1=2k-1=22(n-1;

当n=2k(k∈N*)时,an=a2k=2k=22(n。

所以,{an}的通项公式为an=,n为偶数。(n

(2)由(1)得bn=a2n-1(log2a2n=2n-1(n。设{bn}的前n项和为Sn,则Sn=1×20(1+2×21(1+3×22(1+…+(n-1)×2n-2(1+n×2n-1(1,

2(1Sn=1×21(1+2×22(1+3×23(1+…+(n-1)×2n-1(1+n×2n(1,

上述两式相减,得2(1Sn=1+2(1+22(1+…+2n-1(1-2n(n=2(1-2n(n=2-2n(2-2n(n,

整理得,Sn=4-2n-1(n+2。

所以,数列{bn}的前n项和为4-2n-1(n+2,n∈N*。

4.(2015·合肥质检)已知函数f(x)=x+x(1(x>0),以点(n,f(n))为切点作函数图像的切线ln(n∈N*),直线x=n+1与函数y=f(x)图像及切线ln分别相交于An,Bn,记an=|AnBn|。

(1)求切线ln的方程及数列{an}的通项公式;

(2)设数列{nan}的前n项和为Sn,求证:Sn<1。

解 (1)对f(x)=x+x(1(x>0)求导,得f′(x)=1-x2(1,

则切线ln的方程为y-n(1=n2(1(x-n),

即y=n2(1x+n(2。

易知Ann+1(1,Bnn2(n-1,

由an=|AnBn|知an=n2(n-1=n2(n+1)(1。

(2)证明:∵nan=n(n+1)(1=n(1-n+1(1,

∴Sn=a1+2a2+…+nan=1-2(1+2(1-3(1+…+n(1-n+1(1=1-n+1(1<1。

5.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列。

(1)求数列{an}的通项公式;

(2)令bn=(-1)n-1anan+1(4n,求数列{bn}的前n项和Tn。

解 (1)因为S1=a1,S2=2a1+2(2×1×2=2a1+2,

S4=4a1+2(4×3×2=4a1+12,

由题意得(2a1+2)2=a1(4a1+12),

解得a1=1,所以an=2n-1。

(2)bn=(-1)n-1anan+1(4n=(-1)n-1(2n-1)(2n+1)(4n

=(-1)n-12n+1(1。

当n为偶数时,

Tn=3(1-5(1+…+2n-3(1+2n-1(1-2n+1(1=1-2n+1(1=2n+1(2n。

当n为奇数时,

Tn=3(1-5(1+…-2n-3(1+2n-1(1+2n+1(1=1+2n+1(1=2n+1(2n+2。

所以Tn=,n为偶数。(2n或Tn=2n+1(2n+1+(-1)n-1

6.(2015·杭州质检)已知数列{an}满足a1=1,an+1=1-4an(1,其中n∈N*。

(1)设bn=2an-1(2,求证:数列{bn}是等差数列,并求出{an}的通项公式;

(2)设cn=n+1(4an,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<cmcm+1(1对于n∈n*恒成立?若存在,求出m的最小值;若不存在,请说明理由。

解 (1)∵bn+1-bn=2an+1-1(2-2an-1(2

=-1(1-2an-1(2

=2an-1(4an-2an-1(2=2(常数),

∴数列{bn}是等差数列。

∵a1=1,∴b1=2,

因此bn=2+(n-1)×2=2n,

由bn=2an-1(2得an=2n(n+1。

(2)由cn=n+1(4an,an=2n(n+1得cn=n(2,

∴cncn+2=n(n+2)(4=2n+2(1,

∴Tn=21-3(1+2(1-4(1+3(1-5(1+…+n(1-n+2(1

=2n+2(1<3,

依题意要使Tn<cmcm+1(1对于n∈n*恒成立,只需cmcm+1(1≥3,

即4(m(m+1)≥3,

解得m≥3或m≤-4,又m为正整数,所以m的最小值为3。</cmcm+1(1对于n∈n*恒成立,只需cmcm+1(1≥3,

</cmcm+1(1对于n∈n*恒成立?若存在,求出m的最小值;若不存在,请说明理由。

版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;

原文链接:https://jbhh419.com/post/10326.html

标签: [db:tag] 
关于 我们
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19  网站地图