a2=2a1-2+2=2a1=2×2=4
a3=2a2-3+2=2a2-1=2×4-1=7
n≥2时,
an=2a(n-1)-n+2
an-n=2a(n-1)-2n+2=2a(n-1)-2(n-1)=2[a(n-1)-(n-1)]
(an-n)/[a(n-1)-(n-1)]=2,为定值
a1-1=2-1=1,数列{an-n}是以1为首项,2为公比的等比数列
an-n=1×2^(n-1)=2^(n-1)
an=n+2^(n-1)
bn=an/2^(n-1)=[n+2^(n-1)]/2^(n-1)=1+ n/2^(n-1)
Sn=b1+b2+...+bn=1+1/1+1+2/2+...+1+n/2^(n-1)=n+ 1/1+2/2+...+n/2^(n-1)
令Cn=1/1+2/2+...+n/2^(n-1)
则(1/2)Cn=1/2+2/2^2+...+(n-1)/2^(n-1)+n/2?
Cn-(1/2)Cn=(1/2)Cn=1+1/2+...+1/2^(n-1)-n/2?
=1×[1-(1/2)?]/(1-1/2)-n/2?
=2- (n+2)/2?
Cn=4-2(n+2)/2?=4- n/2^(n-1) -1/2^(n-2)
Sn=n+Cn=n+4- n/2^(n-1) -1/2^(n-2)
f'(x)=2ax+(2-a)-1/x
=(2ax^2+(2-a)x-1)/x
=(2x-1)(ax+1)/x
a>1
令f'(x)>=0
x<=-1/a或x>=1/2
定义域是x>0
∴x>=1/2
增区间是[1/2,+∞),减区间是(0,1/2]
当1/a>=1/2时
f(x)在区间[1/a,1]内的最大值
=f(1)
=a+2-a-0
=2不是ln3
∴1/a<1/2
a>2
f(x)在区间[1/a,1]内的最大值
=f(1/a)
=a*1/a^2+(2-a)/a-ln(1/a)
=1/a+2/a-1+lna
=3/a-1+lna
=ln3
∴a=3符合a>2
综上a=3
如果您认可我的回答,请点击“为满意答案”,祝学习进步!
版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;