首页/问答/正文
江苏 高考 数学 答案(2011年数学高考试卷中)

 2024年01月15日  阅读 69  评论 0

摘要:[db:Intro]

原题:设M为部分正整数组成的集合,数列{an}的首项a1 = 1,前n项和为Sn,已知对任意整数k属于M,当n>k时,S(n+k)+S(n-k)=2(Sn+Sk)都成立。

设M ={3,4},求数列{an}的通项公式.

网上节选的答案:当k∈ M ={3,4}且n>k时,Sn+k + Sn -k = 2Sn + 2Sk且Sn+1+k + Sn +1-k = 2Sn+1 + 2Sk,,两式相减得an+1+k + an +1 -k = 2an+1,即an+1+k - an+1 = an+1 - an +1 -k .所以当n≥8时,an - 6, an - 3, an, a n+ 3, an+ 6成等差数列,且an - 6, an - 2, an + 2, an + 6也成等差数列.

为何要以8为界线呢?主要是想使得n分别取3和4时成的等差数列有共同的等差项数,不然不直接令K=3,或者K=4呢,干嘛要这样烦呢?正好,当n≥8时,有了共同的项数a(n+6)

先把a(n+1+k) - a(n+1) = a(n+1) - a(n +1 -k)转化为a(n+1+k) +a(n +1 -k)=2a(n+1).

因为k∈ M ={3,4},所以当k=3时,即当n>k=3时,a(n+4)+a(n-2)=2a(n+1)

当n>4时,a(n+3)+a(n-3)=2an,当n>5时,a(n+2)+a(n-4)=2a(n-1),当n>6时,a(n+1)+a(n-5)=2a(n-2),,当n>7时,an+a(n-6)=2a(n-3),当n>7时,则an,a(n-3),a(n-6)成等差数列。推出:即n≥8时,a(n+6),a(n+3),an,a(n-3),a(n-6)成等差数列.

所以又当k=4时,即当n>k=4时,a(n+5)+a(n-3)=2a(n+1),当n>5时,a(n+4)+a(n-4)=2an,

当n>6时,a(n+3)+a(n-5)=2a(n-1),当n>7时a(n+2)+a(n-6)=2a(n-2),当n>7时,则a(n+2),a(n-2),a(n-6)成等差数列.又推出:即n≥8时,a(n+6),a(n+2),a(n-2),a(n-6)成等差数列.

……后面n≥8时,a(n+2)-an=an-a(n-2),当n≥9时,a(n+1)-a(n-1)=a(n-1)-a(n-3),即a(n+1)+a(n-3)=2a(n-1),即n≥9时,a(n+3),a(n+1),a(n-1),a(n-3)成等差数列.

这个方法不好,有点像在拼凑,网上还有另外一种解法,如下:

Sn + 3 + Sn -3 = 2(Sn+ S3), Sn + 4+ Sn -2 = 2(Sn + 1+ S3)an + 4 + an -2 = 2an + 1(n≥4)

数列{a3n -1}、{a3n}、{a3n + 1}(n≥1)都是等差数列

Sn- a1为三个等差数列前若干项之和的和Sn = an2 + bn + c(a、b、c为常数);

S1 = a1, Sn + 3 + Sn - 3 =2(Sn+ S3), Sn + 4 + Sn - 4=2(Sn+ S4) a + b + c = 1, 3b + c = 0, 4b + c = 0,a = 1, b = c = 0Sn = n2 an = Sn - Sn - 1(S0 = 0)= n2 -(n -1)2 = 2n -1.

标准答案:方法提示:设y=a/b,x=a/c

不等式可以变为:5/x-3 <= y <= 4/x-1,和 y >= (e的x次方)/x

利用图像求得解集区域,得y范围

y = (e的x次方)/x 这个图像不好画,但是可以求导得到它在(0,1)递减,(1,正无穷)递增,可以画大致图像

版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;

原文链接:https://jbhh419.com/post/12836.html

标签: [db:tag] 
关于 我们
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19  网站地图