首页/经验/正文
近五年数学文科高考卷全国(陕西数学高考卷是卷几)

 2024年01月04日  阅读 86  评论 0

摘要:[db:Intro]

陕西高考数学使用全国Ⅱ卷,即新课标二卷。

高考数学答题技巧

1、选择题

注意审题。把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题目。这样也许能超水平发挥。

数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

挖掘隐含条件,注意易错、易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2、填空题

解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快—运算要快,力戒小题大做;稳—变形要稳,防止操之过急;全—答案要全,避免对而不全;活—解题要活,不要生搬硬套;细—审题要细,不能粗心大意。

3、解答题

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

2015—2017近三年全国卷文科数学高考题整理

2009年普通高等学校招生全国统一考试

文科数学(必修+选修Ⅰ)

本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.

第Ⅰ卷

注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.

3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

参考公式:

如果事件 互斥,那么 球的表面积公式

如果事件 相互独立,那么 其中 表示球的半径

球的体积公式

如果事件 在一次试验中发生的概率是 ,那么

次独立重复试验中恰好发生 次的概率 其中 表示球的半径

一、选择题

(1) 的值为

(A) (B) (C) (D)

解析本小题考查诱导公式、特殊角的三角函数值,基础题。

解: ,故选择A。

(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集 ,则集合 中的元素共有

(A) 3个 (B) 4个 (C)5个 (D)6个

解析本小题考查集合的运算,基础题。(同理1)

解: , 故选A。也可用摩根定律:

(3)不等式 的解集为

(A) (B)

(C) (D)

解析本小题考查解含有绝对值的不等式,基础题。

解: ,

故选择D。

(4)已知tan =4,cot = ,则tan(a+ )=

(A) (B) (C) (D)

解析本小题考查同角三角函数间的关系、正切的和角公式,基础题。

解:由题 , ,故选择B。

(5)设双曲线 的渐近线与抛物线 相切,则该双曲线的离心率等于

(A) (B)2 (C) (D)

解析本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。

解:由题双曲线 的一条渐近线方程为 ,代入抛物线方程整理得 ,因渐近线与抛物线相切,所以 ,即 ,故选择C。

(6)已知函数 的反函数为 ,则

(A)0 (B)1 (C)2 (D)4

解析本小题考查反函数,基础题。

解:由题令 得 ,即 ,又 ,所以 ,故选择C。

(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有

(A)150种 (B)180种 (C)300种 (D)345种

解析本小题考查分类计算原理、分步计数原理、组合等问题,基础题。

解:由题共有 ,故选择D。

(8)设非零向量 、 、 满足 ,则

(A)150° (B)120° (C)60° (D)30°

解析本小题考查向量的几何运算、考查数形结合的思想,基础题。

解:由向量加法的平行四边形法则,知 、 可构成菱形的两条相邻边,且 、 为起点处的对角线长等于菱形的边长,故选择B。

(9)已知三棱柱 的侧棱与底面边长都相等, 在底面 上的射影为 的中点,则异面直线 与 所成的角的余弦值为

(A) (B) (C) (D)

解析本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)

解:设 的中点为D,连结 D,AD,易知 即为异面直线 与 所成的角,由三角余弦定理,易知 .故选D

(10) 如果函数 的图像关于点 中心对称,那么 的最小值为

(A) (B) (C) (D)

解析本小题考查三角函数的图象性质,基础题。

解: 函数 的图像关于点 中心对称

由此易得 .故选A

(11)已知二面角 为600 ,动点P、Q分别在面 内,P到 的距离为 ,Q到 的距离为 ,则P、Q两点之间距离的最小值为

解析本小题考查二面角、空间里的距离、最值问题,综合题。(同理10)

解:如图分别作

,连

当且仅当 ,即 重合时取最小值。故答案选C。

(12)已知椭圆 的右焦点为F,右准线 ,点 ,线段AF交C于点B。若 ,则 =

(A) (B) 2 (C) (D) 3

解析本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。

解:过点B作 于M,并设右准线 与x轴的交点为N,易知FN=1.由题意 ,故 .又由椭圆的第二定义,得 .故选A

2009年普通高等学校招生全国统一考试

文科数学(必修 选修Ⅰ)

第Ⅱ卷

注意事项:

1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.

2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.

3.本卷共10小题,共90分.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

(注意:在试题卷上作答无效)

(13) 的展开式中, 的系数与 的系数之和等于_____________.

解析本小题考查二项展开式通项、基础题。(同理13)

解: 因 所以有

(14)设等差数列 的前 项和为 。若 ,则 _______________.

解析本小题考查等差数列的性质、前 项和,基础题。(同理14)

解: 是等差数列,由 ,得

(15)已知 为球 的半径,过 的中点 且垂直于 的平面截球面得到圆 ,若圆 的面积为 ,则球 的表面积等于__________________.

解析本小题考查球的截面圆性质、球的表面积,基础题。

解:设球半径为 ,圆M的半径为 ,则 ,即 由题得 ,所以 。

(16)若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是

① ② ③ ④ ⑤

其中正确答案的序号是 .(写出所有正确答案的序号)

解析本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。

解:两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写①或⑤

三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

(17)(本小题满分10分)(注意:在试题卷上作答无效)

设等差数列{ }的前 项和为 ,公比是正数的等比数列{ }的前 项和为 ,已知 的通项公式.

解析本小题考查等差数列与等比数列的通项公式、前 项和,基础题。

解:设 的公差为 ,数列 的公比为 ,

由 得 ①

得 ②

由①②及 解得

故所求的通项公式为 。

(18)(本小题满分12分)(注意:在试用题卷上作答无效)

在 中,内角 的对边长分别为 .已知 ,且 ,求 .

解析本小题考查正弦定理、余弦定理。

解:由余弦定理得 ,

又 ,

即 ①

由正弦定理得

又由已知得

所以 ②

故由①②解得

(19)(本小题满分12分)(注决:在试题卷上作答无效)

如图,四棱锥 中,底面 为矩形, 底面 , , ,点 在侧棱 上,

(Ⅰ)证明: 是侧棱 的中点;

(Ⅱ)求二面角 的大小。(同理18)

解法一:

(I)

作 ‖ 交 于点E,则 ‖ , 平面SAD

连接AE,则四边形ABME为直角梯形

作 ,垂足为F,则AFME为矩形

设 ,则 ,

解得

即 ,从而

所以 为侧棱 的中点

(Ⅱ) ,又 ,所以 为等边三角形,

又由(Ⅰ)知M为SC中点

,故

取AM中点G,连结BG,取SA中点H,连结GH,则 ,由此知 为二面角 的平面角

连接 ,在 中,

所以

二面角 的大小为

解法二:

以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系D-xyz

设 ,则

(Ⅰ)设 ,则

解得 ,即

所以M为侧棱SC的中点

(II)

由 ,得AM的中点

所以

因此 等于二面角 的平面角

所以二面角 的大小为

(20)(本小题满分12分)(注意:在试题卷上作答无效)

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。

(Ⅰ)求再赛2局结束这次比赛的概率;

(Ⅱ)求甲获得这次比赛胜利的概率。

解析本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。

解:记“第 局甲获胜”为事件 ,“第 局乙获胜”为事件 。

(Ⅰ)设“再赛2局结束这次比赛”为事件A,则

,由于各局比赛结果相互独立,故

(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而

,由于各局比赛结果相互独立,故

(21)(本小题满分12分)(注意:在试题卷上作答无效)

已知函数 .

(Ⅰ)讨论 的单调性;

(Ⅱ)设点P在曲线 上,若该曲线在点P处的切线 通过坐标原点,求 的方程

解析本小题考查导数的应用、函数的单调性,综合题。

解:(Ⅰ)

令 得 或 ;

令 得 或

因此, 在区间 和 为增函数;在区间 和 为减函数。

(Ⅱ)设点 ,由 过原点知, 的方程为 ,

因此 ,

即 ,

整理得 ,

解得 或

因此切线 的方程为 或

(22)(本小题满分12分)(注意:在试题卷上作答无效)

如图,已知抛物线 与圆 相交于A、B、C、D四个点。

(Ⅰ)求 的取值范围

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。

解:(Ⅰ)将抛物线 代入圆 的方程,消去 ,

整理得 ①

与 有四个交点的充要条件是:方程①有两个不相等的正根

由此得

解得

所以 的取值范围是

(II) 设四个交点的坐标分别为 、 、 、 。

则由(I)根据韦达定理有 ,

令 ,则 下面求 的最大值。

方法1:由三次均值有:

当且仅当 ,即 时取最大值。经检验此时 满足题意。

方法2:设四个交点的坐标分别为 、 、 、

则直线AC、BD的方程分别为

解得点P的坐标为 。

设 ,由 及(Ⅰ)得

由于四边形ABCD为等腰梯形,因而其面积

将 , 代入上式,并令 ,得

∴ ,

令 得 ,或 (舍去)

当 时, ;当 时 ;当 时,

故当且仅当 时, 有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为

高考数学 备考刷题大全 文数 (pdf文件)百度网盘

链接: https://pan.baidu.com/s/13ATfcef98G0y6OFEP16wzA

提取码: 5d6m 复制这段内容后打开百度网盘手机App,操作更方便哦 ?

若资源有问题欢迎追问~

版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;

原文链接:https://jbhh419.com/post/5642.html

标签: [db:tag] 
关于 我们
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19
免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ: 版权所有:金碧辉煌网 沪ICP备2023033053号-19  网站地图