17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为?
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
一.方差的概念与计算公式
例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:
这里D(X) 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动
二.方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2 D(X ) (常数平方提取);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y 相互独立,则
证:记则前面两项恰为 D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S?=〈(M-x1)?+(M-x2)?+(M-x3)?+…+(M-xn)?〉?n
三.常用分布的方差
1.两点分布
2.二项分布
X ~ B ( n, p )引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)
3.泊松分布(推导略)
4.均匀分布
另一计算过程为
5.指数分布(推导略)
6.正态分布(推导略)
7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);
8.F分布:其中X~F(m,n),E(X)=n/(n-2);
~正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2 求上节例2的方差。
解 根据上节例2给出的分布律,计算得到
工人乙废品数少,波动也小,稳定性好。
方差的定义:
设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)?,(x2-x拔)?······(xn-x拔)?,那么我们用他们的平均数s2=1/n(x1-x拔)?+(x2-x拔)?+·····(xn-x拔)?来衡量这组数据的波动大小,并把它叫做这组数据的方差。
灵活性加大了。
2017年江苏高考数学试题延续了前几年的命题风格,注重基础,贴近课本。试题在立足基础、全面考查的前提下,注重能力的考查,体现了能力立意的命题原则。试卷结构稳定,知识点广,重点突出,层次分明,逐步深入,使学生解题入手容易。
注重基础,突出主干:数学试题紧扣教材,具有“上手容易”的特点。填空题第1—10题、解答题15、16题及附加题第21题的A、B、C、D 题都是容易题,学生适当进行运算就可以拿到这些基本分。填空题第11—14题,综合性就大了一些,思维含量较高,注重对数学思想方法的考查,但解决问题的思路和方法还是常见的,会有较好的区分度。解答题的第17题为解析几何题,改变了以往大运算量,学生都能动手做,并且能够得到较好的分数。第18题与平面几何知识有关联,关键是要将问题进行转化,突出了对数学思想方法的考查,如能增强些实际应用性,就更能体现应用价值。附加题的第22题,也是老师、学生预想中的试题,空间向量运算过关得分就很自然。解答题第19、20题和附加题第23题这样的把关题,都采用分层设问,各个小题的难度层层递进,螺旋上升。起点适当,所有的学生都能得到分,不同层次的考生均可有所收获。
试题在强调“通性”“通法”的前提下,渗透了中学数学知识中所蕴含的基本数学思想方法。如第11、12、13、14、16、17、20题的数形结合思想;第8、9、10、11、12、13、14、16、17、20题的函数方程思想;第11、14、16、20题的分类讨论思想;第5、6、7、13、15、19题的转化化归思想。
能力立意,适度创新:2017年江苏高考数学试题在重视考查基础的同时,突出对数学基本能力和综合能力、创新能力的考查。试题对空间想象、抽象概括、推理论证、运算求解、数据处理这五项数学基本能力的考查贯穿始终。例如,第7题就把函数的定义域、解一元二次不等式和几何概型进行有机综合;第12题就把平面向量的基本定理、三角函数、解三角形融合在了一起;第13题就把直线和圆、向量数量积和线性规划等联系在一起,第14题是对函数性质的综合考查。第19、20、23题都具有较高的思维要求,能够考查学生综合、灵活运用所学的数学知识和思想方法,创造性地解决问题的能力。特别是第19题,将新定义的“P(k)数列”和等差数列有序结合,有效检测了学生的学习潜能。
试题编制,注重解题思路方法的多样性和入口的宽泛性,既保证了各个能力层次的考生有所收获,又能让综合能力优秀的考生脱颖而出。
版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;