导数在高中数学课程中处于一种特殊的地位,处于一个知识的汇合点,也是高考数学考试的重点。下面是我给大家带来高考数学导数考点,希望对你有帮助。
高考数学导数考点1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题
求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在xx0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。
还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。关于切线方程问题有下列几点要注意:
(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;
(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。
4.函数零点问题
函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调性与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调性。
5.不等式的证明问题
证明不等式f(x)?g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值等于零;而证明不等式f(x)>g(x) 在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值大于零,或者证明f(x)min?g(x)max、 f(x)min>g(x)max。因此不等式的证明问题可以转化为用导数求函数的极值或最大(小)值问题。
高考数学函数与导数易错知识点求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同?特征?而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c?(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有?变号零点?和?不变号零点?,对于?不变号零点?,函数的零点定理是?无能为力?的,在解决函数的零点时要注意这个问题。
混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
高考数学复习策略(一)最后冲刺要靠做?存题?
数学学科的最后冲刺无非解决两个问题:?一个是扎实学科基础,另一个则是弥补学生自己的薄弱环节。?要解决这两个问题,就是要靠?做存题?。所谓的?存题?,就是现有的、以前做过的题目。
数学的复习资料里有一些归纳知识点和知识结构的资料,考生可以重新翻看这些资料,把过去的知识点进行重新梳理和?温故?,这也是冲刺阶段可以做的。
(二)错题重做
临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。
(三)回归课本
结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用方法和主要题型等,要做到心中有数;结合错题重做,尽可能从课本知识上找到出错的原因,并解决问题;结合题型创新,从预防冷点突爆、实施题型改进出发回归课本。
(四)适当?读题?
读题的任务就是要理清解题思路,明确解题步骤,分析最佳解题切入点。读题强调解读结合,边?解?边?读?,以?解?为主。?解?的目的是为了加深印象:?读?就是将已经熟练了的部分跳过去,单刀直入,解决最关键的环节,收到省时、高效的效果。
(五)基础训练
客观题指选择题和填空题。最后冲刺阶段的训练以客观题和前三个解答题为主,其训练内容应包括以下方面:基础知识和基本运算;解选择题填空题的策略;传统知识板块的保温;对知识网络交会点处的?小题大做?。
猜你感兴趣:
1.2017年高中数学导数的基本公式
2.2017高考数学高频考点
3.2017届高考文科数学知识点总结
4.2017高考数学一轮复习重点
5.高考数学斜率必考知识点总结
6.高考数学函数与导数易错知识点
每一年的高考过后,最受大家关注的就是数学考试。为什么这么说呢?我想大家都记得2003年的高考数学吧,也正是因为那一年江苏卷从此名震江湖。下面是我整理的2017年江苏高考数学难易程度,大家一起看下是否还是当年的水准。
2017年江苏高考数学难度
2003年,据说当年的高考数学江苏卷被人盗走,有泄题风险,于是特地用了当年的“替补卷”,这一张数学试卷的主出题人,是葛军老师,后来他也被被大家称为“高考数学帝”。同样的10年高考数学,江苏卷葛军再次参与出题。为什么把这两年一起讲呢?因为这两年的江苏卷,难度突然飙升,给考生们杀了个措手不及。
当年很多学生在考场都禁不住压力,边做题边哭,实在是太难了。有些考生更是走出考场就心理崩溃,哭得上气不接下气。这两年的全国平均分说法不一,大概在48分到68分左右,一套高考数学试卷,全国大部分考生竟然连一半的分数都没考到,可想而知难度如何。
后来几年的高考数学,虽然江苏卷依然难度比全国各省试卷都要大一些,但是没有再出现过这样的情况。不过今年确实情况堪忧,不少考生再次哭着走出考场,有学霸称考试太难,草稿纸差点不够,尽全力填补了试卷空白,不知结果如何。
老师闻此情况,特地把2017全国高考数学做了一个难度整理,认真评比之后认为,实际上今年的江苏卷和浙江卷难度不相上下,但是相比03年和10年情况还是要好很多。
高考数学答题注意事项1、抓住重点内容,注重能力培养
高中数学主体内容是支撑整个高考数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年高考数学必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
2、关心教育动态,注意题型变化
由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习,
3、细心审题、耐心答题,规范准确,减少失误
计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。
3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。
参考答案为-16,18.只取第一象限点了
版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;