高考数学模拟试题及答案:数列
1.(2015·四川卷)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列。
(1)求数列{an}的通项公式;
(2)记数列an(1的前n项和为Tn,求使得|Tn-1|<1 000(1成立的n的最小值。
解 (1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2)。
从而a2=2a1,a3=2a2=4a1。
又因为a1,a2+1,a3成等差数列,
即a1+a3=2(a2+1)。
所以a1+4a1=2(2a1+1),解得a1=2。
所以,数列{an}是首项为2,公比为2的等比数列。
故an=2n。
(2)由(1)得an(1=2n(1。
所以Tn=2(1+22(1+…+2n(1=2(1=1-2n(1。
由|Tn-1|<1 000(1,得-1(1<1 000(1,
即2n>1 000。
因为29=512<1 000<1 024=210,所以n≥10。
于是,使|Tn-1|<1 000(1成立的n的最小值为10。
2.(2015·山东卷)设数列{an}的前n项和为Sn。已知2Sn=3n+3。
(1)求{an}的通项公式;
(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn。
解 (1)因为2Sn=3n+3,所以2a1=3+3,故a1=3,
当n>1时,2Sn-1=3n-1+3,
此时2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,
又因为n=1时,不满足上式,所以an=3n-1,n>1。(3,n=1,
(2)因为anbn=log3an,所以b1=3(1,
当n>1时,bn=31-nlog33n-1=(n-1)·31-n。
所以T1=b1=3(1;
当n>1时,Tn=b1+b2+b3+…+bn=3(1+(1×3-1+2×3-2+…+(n-1)×31-n),
所以3Tn=1+(1×30+2×3-1+…+(n-1)×32-n),
两式相减,得2Tn=3(2+(30+3-1+3-2+…+32-n)-(n-1)×31-n=3(2+1-3-1(1-31-n-(n-1)×31-n=6(13-2×3n(6n+3,所以Tn=12(13-4×3n(6n+3。经检验,n=1时也适合。
综上可得Tn=12(13-4×3n(6n+3。
3.(2015·天津卷)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列。
(1)求q的值和{an}的通项公式;
(2)设bn=a2n-1(log2a2n,n∈N*,求数列{bn}的前n项和。
解 (1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,
所以a2(q-1)=a3(q-1)。又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2。
当n=2k-1(k∈N*)时,an=a2k-1=2k-1=22(n-1;
当n=2k(k∈N*)时,an=a2k=2k=22(n。
所以,{an}的通项公式为an=,n为偶数。(n
(2)由(1)得bn=a2n-1(log2a2n=2n-1(n。设{bn}的前n项和为Sn,则Sn=1×20(1+2×21(1+3×22(1+…+(n-1)×2n-2(1+n×2n-1(1,
2(1Sn=1×21(1+2×22(1+3×23(1+…+(n-1)×2n-1(1+n×2n(1,
上述两式相减,得2(1Sn=1+2(1+22(1+…+2n-1(1-2n(n=2(1-2n(n=2-2n(2-2n(n,
整理得,Sn=4-2n-1(n+2。
所以,数列{bn}的前n项和为4-2n-1(n+2,n∈N*。
4.(2015·合肥质检)已知函数f(x)=x+x(1(x>0),以点(n,f(n))为切点作函数图像的切线ln(n∈N*),直线x=n+1与函数y=f(x)图像及切线ln分别相交于An,Bn,记an=|AnBn|。
(1)求切线ln的方程及数列{an}的通项公式;
(2)设数列{nan}的前n项和为Sn,求证:Sn<1。
解 (1)对f(x)=x+x(1(x>0)求导,得f′(x)=1-x2(1,
则切线ln的方程为y-n(1=n2(1(x-n),
即y=n2(1x+n(2。
易知Ann+1(1,Bnn2(n-1,
由an=|AnBn|知an=n2(n-1=n2(n+1)(1。
(2)证明:∵nan=n(n+1)(1=n(1-n+1(1,
∴Sn=a1+2a2+…+nan=1-2(1+2(1-3(1+…+n(1-n+1(1=1-n+1(1<1。
5.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列。
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1anan+1(4n,求数列{bn}的前n项和Tn。
解 (1)因为S1=a1,S2=2a1+2(2×1×2=2a1+2,
S4=4a1+2(4×3×2=4a1+12,
由题意得(2a1+2)2=a1(4a1+12),
解得a1=1,所以an=2n-1。
(2)bn=(-1)n-1anan+1(4n=(-1)n-1(2n-1)(2n+1)(4n
=(-1)n-12n+1(1。
当n为偶数时,
Tn=3(1-5(1+…+2n-3(1+2n-1(1-2n+1(1=1-2n+1(1=2n+1(2n。
当n为奇数时,
Tn=3(1-5(1+…-2n-3(1+2n-1(1+2n+1(1=1+2n+1(1=2n+1(2n+2。
所以Tn=,n为偶数。(2n或Tn=2n+1(2n+1+(-1)n-1
6.(2015·杭州质检)已知数列{an}满足a1=1,an+1=1-4an(1,其中n∈N*。
(1)设bn=2an-1(2,求证:数列{bn}是等差数列,并求出{an}的通项公式;
(2)设cn=n+1(4an,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<cmcm+1(1对于n∈n*恒成立?若存在,求出m的最小值;若不存在,请说明理由。
解 (1)∵bn+1-bn=2an+1-1(2-2an-1(2
=-1(1-2an-1(2
=2an-1(4an-2an-1(2=2(常数),
∴数列{bn}是等差数列。
∵a1=1,∴b1=2,
因此bn=2+(n-1)×2=2n,
由bn=2an-1(2得an=2n(n+1。
(2)由cn=n+1(4an,an=2n(n+1得cn=n(2,
∴cncn+2=n(n+2)(4=2n+2(1,
∴Tn=21-3(1+2(1-4(1+3(1-5(1+…+n(1-n+2(1
=2n+2(1<3,
依题意要使Tn<cmcm+1(1对于n∈n*恒成立,只需cmcm+1(1≥3,
即4(m(m+1)≥3,
解得m≥3或m≤-4,又m为正整数,所以m的最小值为3。</cmcm+1(1对于n∈n*恒成立,只需cmcm+1(1≥3,
</cmcm+1(1对于n∈n*恒成立?若存在,求出m的最小值;若不存在,请说明理由。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
版权声明:本文为 “金碧辉煌网” 原创文章,转载请附上原文出处链接及本声明;